Processing of beta-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion.
نویسندگان
چکیده
Microglial cells and astrocytes are closely associated with nearly all compact deposits of the amyloid beta-protein found in the senile plaques characteristic of Alzheimer's disease and trisomy 21. The biosynthesis and metabolic fate of the beta-amyloid precursor protein (beta APP) in astrocytes has not been characterized, and its identification in microglia has not been described. Here, we report the expression of beta APP by astrocytes and microglia in primary cultures of cerebral cortex from newborn rats. Using metabolic labeling followed by immunoprecipitation, we show that both astrocytes and microglia express substantial amounts of the major isoforms of beta APP. This is confirmed by PCR-mediated amplification of the corresponding mRNAs, showing that all three major transcripts (beta APP695, beta APP751, and beta APP770) are present in relatively equal amounts. Despite rapid turnover of the precursor, astrocytes and microglia show a reduced production of soluble fragments of beta APP compared to cells transfected with beta APP cDNAs. The relative amount of soluble beta APP molecules generated is both cell type and isoform specific. Immunocytochemistry reveals that full-length beta APP is located in internal membranous vesicles, with only very little insertion at the cell surface. The latter data are in agreement with the reduced ability of microglia and astrocytes to cleave the beta APP into soluble derivatives. Our findings indicate that both astrocytes and microglia strongly express all three major forms of beta APP but apparently process these molecules by an alternative pathway that generates very small amounts of soluble beta APP. The immunocytochemical localization and the biochemical data lead to the suggestion that beta APP may not function principally as a cell surface or secreted protein in vivo but may have an important intracellular function.
منابع مشابه
P 102: The Study of Some Factors Which Effect on Beta-Amyloid Signaling in Neuroinflammation
Neurological inflammatory diseases are developing rapidly. Different factors involved in the pathogenesis of these diseases. In this article, we discuss some of the mechanisms are dealt with. An aberrant procedure of beta-amyloid precursor protein (BAPP) to form neurotoxic beta-amyloid peptides and an accumulated insoluble polymer of beta –amyloid (BA) that forms the senile plaque. The ab...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کاملP 131: Connection Process Inflammation and Improvement Alzheimer’s Disease
Platelet aggregation beta amyloid main causes inflammation of neurons in Alzheimer’s disease. In fact, creating this inflammation due to inappropriate actions in blood brain barrier (BBB) and astrocyte and microglia during the last century that studies conducted in this case nothing has been found. The only thing that can be done to prevent and reduce pro-inflammatory factors such as cyto...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 12 شماره
صفحات -
تاریخ انتشار 1991